If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+24=40
We move all terms to the left:
z^2+24-(40)=0
We add all the numbers together, and all the variables
z^2-16=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $
| Y=5x^2+30x+7 | | (4x-5)=(x+20 | | -34+x/4=-6 | | 0.3(w+10)=1.3w | | 7x+1/2=23 | | 15x-280=5x | | P+3q=15 | | -10(9)=p | | –8v=–5v+9 | | 3(6x+6)=6(8x+8) | | -10(9)2=p= | | 29=1+1/2x | | 16x+7=23 | | t=(-20) | | w+14=222 | | (x+17)=(2x-2)+(5x+5) | | 0.4/r=1.5 | | S=-16t^2+96T+9 | | 4-8e=12 | | w2+15=40 | | -18x-5+12x=7 | | 5-j=16 | | x-5+74+x=180 | | |5x+9|=2x+27 | | -22x=-20 | | A=b/9 | | t=-4(-5) | | 7x+2=-8x+13 | | t+26=–58 | | –(6m+8)=4(17─m) | | −3=x/−6x+4 | | 63=z+95 |